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We derive the necessary and sufficient conditions for obtaining the first integral 

of a nonholonomic system with linear homogeneous constraints from the first in- 
tegral of the corresponding system freed of constraints. We present examples. 

1, We consider a nonholonomic scleronomous mechanical system with the general- 
ized coordinates pi, q”, . . . , f, the doubled kinetic energy 2T = g+ qeh q’p and the 

force function U = U (q”). The system is subject to the n - k linear homogeneous 
constraints (I?‘~ q’” :y 0. In what follows the Greek indices h, p, v, . . . . (5 take the val- 
ues 1, 2, . . . . IL, while the Latin ones a, bT c, d take the values 1, 2, . . . . k and p, 4, 
r take k -+ 1, . . . . II. By introducing the new variables 

q.” = CI,XS’a (1.1) 

we write the equations of motion in the following form Cl]: 

Ds’” /dt = F”, DA-“’ = did f I-&dsbic 

F’ = Gd”F, = Gda~aXQx = Gdaaaxdu / dqlc 

r$ = G’lrLI’,, cb 
r a,cb = r. A, “, pua%%c” + ghaaQa,h I &pacO 

The vectors a, (aax) are called the admissible vectors of the system and satisfy the 
condition (OX% u i( = 0 (1.2) 

The matrix Gal’ is the inverse of the matrix Gab = ghp uah abp. By rX, I* y we de - 
note the Christoffel symbols of the first kind, defined by the metric tensor g+. 

We consider the case when the system moves by inertia, i.e., U = const. As was 
shown in p], in order for ?L,s*‘~ = c to be a linear integral of a nonholonomic system, 
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it is necessary and sufficient to fulfill the following conditions: 

Vc& + v,a, = 0 (1.3) 
Suppose that the linear integral of a nonholonomic system has been obtained fron &q*’ 
after the substitution (1. l), therefore h, = &aaX. The vector EK can be obtained in 
an infinity of ways. Indeed, consider the two systems of vectors 

01, d, . . ., wk, mk+l, . . .) w’? it),a = RXYUQ" 

al, "2,...,ak7 ak+17. . ., a,, ; apx = gx”w,p 

Here the Up are vectors obtained from the nonholonomic constraints, the w, are admi- 

ssible vectors, the matrix ghi” is the inverse of matrix g+. From condition (1.2) we 
find that CQXQJ~~ = 0. Let 77, = Ex + F)l,~),p,where pi, are arbitrary functions of 4’. 

Obviously, &ctax = qxanx. Substituting h, = &aax into condition (1.3). we obtain 

(1.4) 

where r5 are Christoffel symbols of the second kind, 
If kX,.X = c is a linear integral of a constraint-freed system (we subsequently write 

CFS for brevity), it is known [3] that 

U.,E, -t- C,E, = 0 (1.5) 

Taking (1.5) into account, from condition (1.4) we find 

j, (Y, CL,,’ + V,(L,.“) = 0 (I.61 

Conditions (1.6) are necessary and sufficient for that the linear integral k,sn I c of 
a nonbolonomic system can be obtained from the linear integral &Q’~ :: c of the corr- 
esponding CFS. We assume that the integral &q-x = r generates the integral has’” = C. 

From the way in which the objects I’,,,,,,_ were defined it follows that 

g+(L,,~*V&,ll = 0 (1.7) 
Relation (1. ‘7) can be written as 

v o. x = R$LI’X r II (1.8) 

where the lj,,,” are functions of (1’. Taking (1.8) into account, we obtain conditions 
(1.6) in the form 

&(&,,% (81.1, mt X,.) = 0 (1.9) 

The condition 
&” = 0 (1.10) 

is only sufficient. It is not necessary, notwithstanding the assertions in [4]. As a matter 
of fact, if we treat glcLPX as being unknown, (1.9) is a linear homogeneous system of 
not more than l/3 k (k + 1) equations in II - X- unknowns. Evidently when IZ is large, 
the number of unknowns is greater than the number of equations. If the mechanical sys- 
tem satisfies the requirement Hii,, -t B& r=; 0 (1.11) 
condition (1.9) is satisfied identically. Consequently, every linear integral of the CFS 
generates a linear integral of the nonholonomic system. 
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Example 1. We consider the following problem [S].Two wheels of radius b connec- 
ted by an axle of length 21 roll on a plane and may rotate freely around the axle. As 
the generalized coordinates we select q1 = cp, q2 = x, q3 = y, q+ = 4, q5 = I),‘, where 

5. yare the coordinates of the system’s center of gravity, q is the angle between the 
z -axis and the OIOZ-axis, ‘II, and Q’ are angles of rotation of the wheels, measured 

from the vertical radius. The no-slip condition of rolling yields 
Z’ cos (0 _t y sin cp = 0 

--s’sirlW+y’coscp-Z~‘-_bg”=O 

-~z’sincp+y’cos~+l~‘-b~‘=O 
By introducing the new variables 

!,‘I = cp’, qmz=-ss’sincp, q’8=s’C0SCp 
. 

+‘p.++, 
1 

44’ q.5+--i;-rp~ 

we find 

a, (I, 0, 0, 1 I b, ---I I b), a2 (0, -sin ‘p, cos cp, 1 I b, 1 / b) 

From the constraint equations we obtain 

~3 (0, cos q, sin cp, 0, 0), r# (--&~-sin ‘p, cos cp, 0, --b) 0s (I, -sin cp, cos v,--by 0) 

Keeping in mind that 

gll = 2m12 = A, gz2 = g33 = 2m + m’ = B, g,, = gs9 = I + I’b! 4F = C 

where I is the wheel’s moment of inertia about the center, I’ is the axle’s moment of 
inertia about the center of gravity, m is the wheel’s mass and nr’is the axle’s mass, we 

find 

( 
cos cp 

a3 O,B' qqo,o) 

( 

1 sin ‘p 00acp bD ’ bC ’ 
a4 -7, -7’7’ C"_DDa 7 - @_-Da > 

t 
1 sin 9 cos (p bC bD 

a5 A, -7’ B * - ,9--z 9 CZ-- ) 

By relations (1.8) we obtain RI23 = --I? and all remaining Bzb = 0. Condition (1.9) 

yields E,aa” = 0 or EXo, s = 0. In developed form we have Es cos ‘p + En sin cp = 0 or 
Es cos cp + ES sin f+3 = 0. 

If the linear integral of the corresponding CFS satisfies the condition described, it gen- 
erates a linear integral of the nonholonomic system. Taking the form of ~,,into account, 
we conclude that all the coordinates of the CFS are cyclic. Hence it follows that the 
CFS’s integrals 

-1 . ai /acp =C1, 8T / a$’ = Cz, aT /it’*” = C3 

generate the nonholonomic system’s integrals 

qJ - G’,, 
C-D 

-Q’+ b 
C-l-0 

b 
s’ = cz, 

D-C 

b 

C-I-D 
b 

se = cs 

We can immediately verify that these integrals of the nonholonomic mechanical system 
do not satisfy condition (1.10). Condition (1.10) is geometric, i.e., it does not alter 

’ under the change of coordinate ? ” = qx (8) and under the transformation of vectors 
a;, = $ a;, when def 1) $, 11 # 0. Indeed, 

E,,a,X; = ?$ AG,.-‘Y X’ai$ = &azr$, = O 
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The definitions of the notion of a cyclic coordinate in [4, 61 differ. Even if we follow 

the definition in [4], the linear integrals indicated do not correspond to cyclic coordin- 

ates. According to this definition we must have ar / 84 x0 = (r and u:” -= 0 [4] in Routh’s 

equation for qxO 

It is easily verified that the integrals satisfy the first condition. Therefore, (I” is a 

cyclic coordinate; in other words, $,tO = ijEO,where 8:, is the Kronecker symbol. Since 

k: 0 0: = “z, 0: = az0 = 0, the second condition is not satisfied. Consequently, the lin- 

ear first integrals, homogeneous in the velocities, of the nonholonomic system do not 

correspond to the cyclic coordinates in [4]. 

Example 2. Consider the free motion of a homogeneous ball of mass nt = 1, rad- 

ius a,radius of gyration k on a horizontal rough plane [6]. The motion is defined in the 

coordinates ql = cp, q” = ,I), q3 = 0, q4 = I, q5 = y. The doubled kinetic energy is 

ZT = 5” _~ ?J’” + k” (e’~ f ~‘” -t ‘p’~ i_ 2~‘g’ cos u) 

The nonholonomic constraints are written as 

5’ = a sin $6. - a sin 6 cos I&I’ 
Y’=-UCcos~O’-uainesin~‘cF 

Analogously to Example 1 we find 

% (1, 0, 0, --a sin 8 cos I#, -a sin 6 sin 9) 

as (0, 1, 0, 0, 0) 

a3 (0, 0, 1, u sin I!:, --a ct~s$) 

M1 \ lEF,‘t: , - a “;‘;.fiL;; * , - 
a sin $ 

k2 9 i,o 
) 

, 

asin+ a cos 0 sin Q 
a5 \ _ , kJ smt) ’ - k’si*(j 5 *,0,1 

) 
f3,p = - Up14 = B” sin 0 sin I$, Bp~j = - Btlj = B” sin 0 cos 11, 

f& = -B;l- II0 cos 0 cos$, 11F3 --_ -l$l== 13' cos 9 sing 

4 4 0, B,,= _ 112,= U cos$, H5. = -Bi2 = B” sin II, 23 

Bfl = B& = “& =A fItI -m- B;, == I& = 0, B” = l/,& j ($ + k”) 

It follows from condition (1.11) that each linear integral of the CFS generates a linear 

integral of the nonholonomic system. 

Upto now we have been considering the problem when the CFS’s linear integral gen- 

erates the nonholonomic system’s linear integral. The inverse Droblem is stated in the 

following way. Suppose that we are given the integral has’” = C of a nonholonomic 

system. We need to establish whether it is generated by a linear integral of a CFS, i.e., 

whether we can represent h, in the form 

%l = %&a* (1.12) 

where qxq’% = cis the CFS’s linear integral. Consequently, we must verify the exist- 

ence of a vector & = rl~ + Ppax’ s a 1s rng the Killing’s equation [3], and IJ~ is de- t’ fy’ 

termined from (1.12). Let us show by means of an example that not every integral of 

the nonholonomic system is generated by an integral of the corresponding CFS. 

Example 3. Consider Chaplygin’s sleigh on a horizontal plane when the direction 

of the runner is perpendicular to the segment connecting the center of gravity and the 
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cutting point [7]. As was shown in [8], I’ / cos cp =: C is a linear integral of the nonhol- 
onomic system. In other words, 1, = 0, 1, = 1 / cos cp yield a vector defining the system’s 

linear integral. We find that ni = 0, 11~ = cos ‘p, n:, = sin cp. Hence we obtain 

& = 0, &z =- ens rJ - p tg (p, E, --: sin cp + p 

We can directly verify that a p does not exist for which z, satisfies the Killing equation. 
In the case when 6’ # cnnst (the system does not move by inertia), conditions (1.3) 

and h,F” = 0 (1.13) 
are the existence conditions for the ncnholonomic system’s linear integral of the form 
has’” = c . For the linear integral &q x = Cof the CFS to generate a linear integral 
of the nonholonomic system, we must fulfill, in addition to condition (1.9), the further 

condition [ 1, 21 (1.14) 

Condition (1.14) is essential. With every system containing U # const we can associate 
a system moving by inertia. If ~(l’” -- C is a CFS’s linear integral, which generates a 
linear integral of a nonholonomic system moving by inertia, and if it also is the linear 

integral ofa CFS which does not move by inertia, then it does not follow that this inte- 
gral remains an integral of a nonholonomic system not moving by inertia. 

Consider the system in Example 1. Suppose U = U ((~).The integral tlT ! a$” = C3 

also is an integral of a CFS since :_“aU / I?[! ’ =: O.C)n the other hand, condition (1.14) is 
not satisfied identically. Indeed, 

20 = Gllcp’” f &s’” 

The left hand side of (1.14) has the form 

Consequently, 

I n-c au 
---acp#O b Cl1 

D-C D+C 
-- 19’ -t --jy 

b 
s’ = c3 

is not an integral of a nonholonomic system wi.th U == U (cp). 
In the general case, if we bear in mind that 

gV = GuboahobP + GPqoPhoPi* (1.15) 

where the matrix G pp is the inverse of matrix G,, = ghiLaph%f, we can write condi- 
tion (1.14) as 

Ex Q” - GPg~pXo.oVQx~V = 0 
If &,,*X = c is an integral of a CFS, &Qx = 0. l’n order to eliminate the necessity of 
considering (1.14), we must fulfill the condition 

GPqczpXaqYQ& = 0 or GpqFph, = 0 

h, := &$ X. F, = QvapV (1.16) 

Relation (1. XG) shows that the perpendicularity of the vectors F, and h, in the metric 
defined by the object G,, is a necessary and sufficient condition for eliminating the 
need of considering (1.14). 
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2. We go on to consider the quadratic integrals of a nonholonomic scleronomous me- 
chanical system moving by inertia. The general form of such an integral is 

b,,s’“s’” = C (2.1) 
In order for (2.1) to be an integral of a nonholonomic mechanical system it is necessary 
and sufficient [Z] to fulfill the following condition: 

v&c + v,b,, + v&ad = 0 (2.2) 
Suppose that the quadratic integral has been obtained from the expression Uh~q”q’” 

after substitution (1.1). then b,, = U~~CC, h a, 1*. By substituting these expressions into 

condition (2.2) we find 

aaxadx%p (V&+ f vhapx + ~$b.) $ 

+ Qp$ [@Ed + %z;,) aif + @d”, + %a) c$ -t @,“a + @ic) ~$1 = 0 (2.3) 

If $+t~‘~~‘1* = c is a quadratic integral of a CFS, we have [9] 

VxahlL + Vhawx + vpaxh = Cl (2.4) 

Then, taking (2.4) into account, from (2.3) we obtain 

+$J [ (J%d + &?ia) &t + (BZi, + B:d) x”; + (%a + %c) &I = o (2.5) 

Condition (2.5) is necessary and sufficient for an integral of a CFS to generate a quad- 
ratic integral of a nonholonomic system. Just as in the case of linear integrals we see 

that the condition 

is sufficient for a quadratic integral of a CFS to generate a quadratic integral of a non- 

holonomic system. The general solution of the system of Eqs. (2.6),is 

sip = pab~)k%yb + ~~~~~~~~~~~~ (2.7) 

where PA ppQ are symmetric objects. In the general case formula (2.7) does not yield 
all the solutions of system (2.5). 

Consider Example 2. Condition (1.11) is fulfilled, therefore, condition (2.5) is satis- 
fied identically and consequently each quadratic integral of the CFS generates a quad- 
ratic integral of the nonholonomic system. These results are natural if we keep Sumba- 

tov’s theorem [lo ] in mind. It can be immediately established that the constraints are 

the linear first integrals of a CFS moving by inertia. Consequently, in the notation ad- 

opted in [lo], we obtain R,, - . -0. Since Q, = 0, we have Roj = 0. Then cp = 0 satisfies 
the theorem’s requirements. Consequently, the Hamilton-Jacobi equations for the CFS 

and the nonholonomic system coincide. We thus conclude that the phase trajectories of 

the nonholonomic system are part of the phase trajectories of the CFS, Every integral 
of the CFS, retaining a constant value on the phase trajectories of this system retains 
the very same constant value on the trajectories of the nonholonomic system. So that 
every integral of the CFS generates an integral of the nonholonomic system. 

When a mechanical system does not move by inertia, it admits, besides an integral 
of form (2. l), of a quadratic integral of the form 

b,,sase + v = c (2.8) 

where V is a function of the q*. Conditions (2.2) and 

b&” = 0 (2.9) 
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are the conditions for a mechanical system to admit of integrals of form (2.1) p], while 
conditions (2.2) and 

2b~~~~ + dV u,x = 0 
w (2.10) 

for it to admit of integraIs of form (2.8). In both cases condition (2.2) goes over into 
(2.5). Conditions (2.9) and (2.10) impose additional constraints. Keeping (1.15) in 
mind, for (2.9) we obtain 

aQ&j a~~Gcd~~a~* = u~~ab~~~(~~%.- Gpqupt'"olq")= UkpUbhQP= bbpFp = 0 

If ah,~‘hq’P = C is an integral of a CFS, then the first term [P] equals zero and (2.9) 
takes the form bbpFP = 0 (2.11) 
In the same way, for (2.10) we find 

(2a,,QP + 8’ I tkf) a: - bc,Fp = 0 

If ~~~~‘~q*~ -/- %’ = C is an integral of a CFS, then [9] the first term equals zero, so 
that condition (2.10) turns into (2.11) and, consequently, coincides with (2.9). 

Consider Chaplygin’s sleigh once more (Example 3). For this system the doubled kin- 
etic energy and the nonholonomic constraint are 

2T = (x’ j- 2 cos q’p’)* + (3’ + I sin cpt~‘)~ + k%p’$ dy = tg pdz 

Then the quadratic integral of the CFS is 

(2’ + 1 cos cprp’)% + (y’ + 2 sin ‘pq’)” = C (2.12) 

On the other hand, we can choose a, (1, O,O), m (C!, 1, tg cp) as the admissible vectors. 
If we drop the indices on al and uz and use the nonholonomic constraint, we find 

6G (P + 1*, 1 eos (p, I sin cp), co2 (E J COB v, 2, tg q$ 

d (0, --ta (p, If 

We can directly establish that 

ah& = cos2 QpwhQO$ + COS‘J qW~soyp 

It follows frarn formula (2.7) that if we substitute vJ’ = tg ‘p I’ into (2.12), we obtain 
the nonholonomic system’s quadratic integral 

cos-2 ‘p (5’ + 1 cos qxpy = c 

3, The proposed method can be extended, by using [ 11, to the first integrals of a 
nonholonornic system moving by inertia, which have the form 

b ac.._~s*as+c , . . cd = c (3-1) 
It can be shown that this is the most general form of a first integral, being a rational 
entire function of the generalized velocities, Proceeding in exactly the same way as 
in Sect. X and 2, we obtain the necessary and sufficient conditions for a CFS’s first in- 
tegral of the form 

ahl* . . . sP4 *En . . , q’V = c (3.2) 

to generate a nonholonomic system’s first i.ntegral. After we have substituted (1.1) into 

(3.2), we get b ae... d = akfh.., &,‘acp. . . ad’ 

All the arguments in Sect. 1 and 2 extend to the general case. The expressions obtained 
are cumbersome. The remarks made remain in force when the mechanical system does 
not move by inertia. 
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We make a qualitative investigation of a dynamic system by bifurcation-theore- 
tic methods [l], using the property of the monotonic rotation of the direction 
field. We trace the possible bifurcations and the behavior of the bifurcation cur- 
ves in various sections of the parameter space. The system has been examined 
before p, 31, however, a complete qualitative investigation has not been made. 

1. Rotation of the field. We examine the system 

4 -= 
dt Y = p, A$+ silt (p - 2as 1/_ = s- i_ y- Q (1.1) 

for positive a, fi and S. The difference between the direction fields of system (1.1) 
with parameters P, ccO, s0 and of an altered system with parameters p, a,, S1 for 

y#Ois 


